#15 MARTIAN TERRAIN

Mars' Many Dune Fields.
54ad3fce9d379f5d70ba16ea_ESP_022607_1725_preview.jpg
HiRISE observations can be used to aid in the classification and volume estimates of dunes for the USGS global dune database--another way how the HiRISE camera helps other science agencies.

Sand dunes are among the most widespread aeolian features present on Mars. Their spatial distribution and morphology, sensitive to subtle shifts in wind circulation patterns and wind strengths, can relate to patterns of erosion and deposition, and give clues to the sedimentary history of the surrounding terrain.

Dunes are particularly suited to comprehensive planetary studies because they are abundant over a wide range of elevations and terrain types. Thus a global scale study of Martian dunes serves a dual purpose in furthering understanding of both climatic and sedimentary processes, two fundamental topics currently driving Martian science.

This caption is based on the original science rationale.

Written by: HiRISE Science Team
+1
All original images are presented by:
547d825dd0db3b8058acab8d_nasa.png 547d828239b0bf7409a305d1_arizona.png 547d828cd0db3b8058acab91_esa.png 547d832bd0db3b8058acab97_hubble.png 547d83369e4d1e7609d4c35d_jpl.png